Fluoride exposure attenuates expression of Streptococcus pyogenes virulence factors.

نویسندگان

  • Visith Thongboonkerd
  • Jirapon Luengpailin
  • Junkai Cao
  • William M Pierce
  • Jian Cai
  • Jon B Klein
  • R J Doyle
چکیده

Fluoridation causes an obvious reduction of dental caries by interference with cariogenic streptococci. However, the effect of fluoride on group A streptococci that causes rheumatic fever and acute poststreptococcal glomerulonephritis is not known. We have used proteomic analysis to create a reference proteome map for Streptococcus pyogenes and to determine fluoride-induced protein changes in the streptococci. Cellular and extracellular proteins were resolved by two-dimensional polyacrylamide gel electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry. 183 protein spots were visualized, and 74 spots representing 60 unique proteins were identified. A 16-h exposure to sodium fluoride caused decreased expression of proteins required to respond to cellular stress, including anti-oxidants, glycolytic enzymes, transcriptional and translational regulators, and protein folding. Fluoride caused decreased cellular expression of two well-characterized S. pyogenes virulence factors. Fluoride decreased expression of glyceraldehyde-3-phosphate dehydrogenase, which acts to bind fibronectin and promote bacterial adherence. We also performed proteomic analysis of protein released by S. pyogenes into the culture supernatant and observed decreased expression of M proteins following fluoride exposure. These data provide evidence that fluoride causes decreased expression by S. pyogenes proteins used to respond to stress, virulence factors, and implicated in non-suppurative complications of S. pyogenes, including glomerulonephritis and rheumatic fever.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth-phase-dependent expression of virulence factors in an M1T1 clinical isolate of Streptococcus pyogenes.

The effect of growth phase on expression of virulence-associated factors was studied by Northern hybridization in an M1T1 clinical isolate of Streptococcus pyogenes. Expression of M protein, C5a peptidase, and capsule was maximal in the exponential phase of growth, while streptococcal pyrogenic exotoxins A and B and mitogenic factor were maximally expressed in later phases of growth.

متن کامل

Identification of srv, a PrfA-like regulator of group A streptococcus that influences virulence.

We have identified a Crp/Fnr-like transcriptional regulator of Streptococcus pyogenes that when inactivated attenuates virulence. The gene, named srv for streptococcal regulator of virulence, encodes a 240-amino-acid protein with 53% amino acid similarity to PrfA, a transcriptional activator of virulence in Listeria monocytogenes.

متن کامل

Detecting Virulence Factors and Antibiotic Resistance Pattern of Trueperella Pyogenes Isolated from Bovine Mastitic Milk

Backgrounds and Aims: Mastitis is a mammalian disease which is considered important due to its potential economic damages. Trueperella pyogenesis is one of the important opportunistic pathogens of the mammary glands of cattle. This bacterium can produce acute mastitis infection in dairy cattle. In fact, this bacterium has several virulence genes which contribute to its pathogenicity. Therefore,...

متن کامل

An insert in the covS gene distinguishes a pharyngeal and a blood isolate of Streptococcus pyogenes found in the same individual

Expression of the extensive arsenal of virulence factors by Streptococcus pyogenes is controlled by many regulators, of which CovRS is one of the best characterized and can influence ∼15 % of the genome. Animal models have established that mutants of covRS arise spontaneously in vivo resulting in highly invasive organisms. We analysed a pharyngeal and a blood isolate of S. pyogenes recovered fr...

متن کامل

The streptococcal hemoprotein receptor: a moonlighting protein or a virulence factor?

The β-hemolytic group A streptococcus (GAS) is a major pathogen that readily uses hemoglobin to satisfy its requirements for iron. The streptococcal hemoprotein receptor in GAS plays a central role in heme utilization and binds fibronectin and laminin in vitro. Shr inactivation attenuates the virulent M1T1 GAS strain in two murine infection models and reduces bacterial growth in blood and bindi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 19  شماره 

صفحات  -

تاریخ انتشار 2002